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Overview

• Boolean network model for gene regulatory circuits

• Attractor scaling in critical Boolean networks

• Which attractors are biologically relevant?

• Check stability under fluctuating response times

• Stable and unstable attractors: system size scaling
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Boolean network model: coupled switches
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Model setup and dynamics

• Abstract model of coupled biological switches

• Model setup: Directed network of N units with binary states

xi ∈ {0,1}

• Dynamics with synchronous update

xi(t + 1) = Booli(xi(1)(t), xi(2)(t), ..., xi(k)(t)) (1)
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An attractor and its basin

(Andy Wuensche, 1998)
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Data: # cell types vs. genome size

Sublinear attractor scaling

(Kauffman, 1993)
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The history of attractor scaling

• Kauffman (1969): sublinear, #attractors ∝
√

#nodes

• Bilke and Sjunesson (2001): linear

• Socolar and Kauffman (2003): superlinear

• Samuelsson and Troein (2003): superpolynomial

END of story?
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Are all attractors biologically relevant?

• consider toy cell — two regulatory genes, 3 attractors

x1(t + 1) = x2(t)

x2(t + 1) = x1(t)
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Fluctuating response times

• Biological switches are noisy ⇒ non-deterministic timing

• No central clock to sustain synchrony

x1

x2

t

• Attractors with unstable timing are not relevant for biological

systems.
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“Update modes”
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Stability criterion

Perturbing synchronous switching:

1. Let system run until time T .

2. Keep subset S of switches frozen during [T, T + ε].

3. Let system run normally again.

The attractor is stable iff all such perturbations (S, T ) heal, i.e.

the system always returns to synchronous switching.
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Counting stable and unstable attractors
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critical random Boolean networks, K = 2 inputs per node

exhaustive enumeration of state space
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Stable attractors: square root scaling
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Stable attractors: larger basins
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By sampling state space one preferentially finds stable attractors.
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Summary

• Studied Critical Boolean networks with noisy updating

• Almost all attractors are unstable against small amounts of

noise

• Sublinear growth of number of stable attractors with system

size

• Mimics sublinear growth of number of celltypes with genome

size

Klemm & Bornholdt, Phys. Rev. E 72, 055101(R) (2005);

PNAS 102, 18414 (2005).
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From Boolean network to discrete map
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Attractors in discrete map
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Efficient search for attractors?

• # states in attractors � 2N

• full enumeration of state space is not an efficient method

for finding all attractors

• Node removal (Bilke and Sjunnesson, 2001): reduce N re-

cursively by eliminating constant nodes and nodes that do

not influence other nodes

• Can reduction go beyond?

18



Node-node correlations and contraction
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Node-node correlations and contraction
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Test case

• Test recursive node con-

traction in networks that

cannot be decimated di-

rectly.

• Use only Boolean func-

tions that depend on

both inputs (K = 2).

• Each node is “seen” by

at least one other node.
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Shrinking state space
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