Stable and unstable attractors in Boolean networks

Konstantin Klemm

Bioinformatics, Dept. of Computer Science University of Leipzig, Germany

Overview

- Boolean network model for gene regulatory circuits
- Attractor scaling in critical Boolean networks
- Which attractors are biologically relevant?
- Check stability under fluctuating response times
- Stable and unstable attractors: system size scaling

Boolean network model: coupled switches

- Abstract model of coupled biological switches
- Model setup: Directed network of N units with binary states $x_i \in \{0,1\}$
- Dynamics with synchronous update

$$x_i(t+1) = \text{Bool}_i(x_{i(1)}(t), x_{i(2)}(t), \dots, x_{i(k)}(t))$$
(1)

An attractor and its basin

(Andy Wuensche, 1998)

Data: # cell types vs. genome size

Sublinear attractor scaling

(Kauffman, 1993)

The history of attractor scaling

- Kauffman (1969): sublinear, #attractors $\propto \sqrt{\text{#nodes}}$
- Bilke and Sjunesson (2001): linear
- Socolar and Kauffman (2003): superlinear
- Samuelsson and Troein (2003): superpolynomial

END of story?

Are all attractors biologically relevant?

• consider toy cell — two regulatory genes, 3 attractors

Fluctuating response times

- Biological switches are noisy \Rightarrow non-deterministic timing
- No central clock to sustain synchrony

• Attractors with unstable timing are not relevant for biological systems.

"Update modes"

"Update mode" = response time distribution

Stability criterion

Perturbing synchronous switching:

- 1. Let system run until time T.
- 2. Keep subset S of switches frozen during $[T, T + \epsilon]$.
- 3. Let system run normally again.

The attractor is stable iff all such perturbations (S,T) heal, i.e. the system always returns to synchronous switching.

Counting stable and unstable attractors

critical random Boolean networks, K = 2 inputs per node exhaustive enumeration of state space

Stable attractors: square root scaling

By sampling state space one preferentially finds stable attractors.

Summary

- Studied Critical Boolean networks with noisy updating
- Almost all attractors are unstable against small amounts of noise
- Sublinear growth of number of stable attractors with system size
- Mimics sublinear growth of number of celltypes with genome size

Klemm & Bornholdt, Phys. Rev. E **72**, 055101(R) (2005); PNAS **102**, 18414 (2005).

From Boolean network to discrete map

Attractors in discrete map

Efficient search for attractors?

- # states in attractors $\ll 2^N$
- full enumeration of state space is not an efficient method for finding all attractors
- Node removal (Bilke and Sjunnesson, 2001): reduce N recursively by eliminating constant nodes and nodes that do not influence other nodes
- Can reduction go beyond?

Node-node correlations and contraction

Node-node correlations and contraction

Test case

- Test recursive node contraction in networks that cannot be decimated directly.
- Use only Boolean functions that depend on both inputs (K = 2).
- Each node is "seen" by at least one other node.

Shrinking state space

22