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Overview

Boolean network model for gene regulatory circuits

Attractor scaling in critical Boolean networks

Which attractors are biologically relevant?

Check stability under fluctuating response times

Stable and unstable attractors: system size scaling



coupled switches

Boolean network model:
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Model setup and dynamics

e Abstract model of coupled biological switches

e Model setup: Directed network of N units with binary states
T; € {07 1}

e Dynamics with synchronous update

xi(t -+ 1) = BOO|¢($i(1)(t),xi(2)(t), ,xz(k)(t)) (1)




An attractor and its basin

= 4 an attractor state
shown in detail

transient tree
and sub-trees

(Andy Wuensche, 1998)



Data: # cell types vs. genome size

Sublinear attractor scaling
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The history of attractor scaling

e Kauffman (1969): sublinear, #attractors o< v/#nodes

e Bilke and Sjunesson (2001): linear

e Socolar and Kauffman (2003): superlinear

e Samuelsson and Troein (2003): superpolynomial

END of story?



Are all attractors biologically relevant?

e consider toy cell — two regulatory genes, 3 attractors
O r1(t+1) = xo(t)
O ro(t+1) = x1(1)
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Fluctuating response times

e Biological switches are noisy = non-deterministic timing

e NO central clock to sustain synchrony
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e Attractors with unstable timing are not relevant for biological
systems.



“Update modes”
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“Update mode’ = response time distribution



Stability criterion

Perturbing synchronous switching:

1. Let system run until time T'.

2. Keep subset § of switches frozen during [T, T + €].

3. Let system run normally again.

The attractor is stable iff all such perturbations (S,T) heal, i.e.
the system always returns to synchronous switching.
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Counting stable and unstable attractors
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critical random Boolean networks, K = 2 inputs per node

exhaustive enumeration of state space
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Stable attractors: square root scaling

average number of attractors
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N1/2, square root of system size
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Stable attractors: larger basins

E 1 T T | T | T |
§ - —— probability to reach a stable attractor -
g — — fraction of stable attractors
- 0.8 _|
S
n
S _ _
3
® 06— ]
Q
g | ]
1))
©
5 04 —
g

0 10 20 30 40

systemsizeN

By sampling state space one preferentially finds stable attractors.
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Summary

e Studied Critical Boolean networks with noisy updating

e Almost all attractors are unstable against small amounts of
noise

e Sublinear growth of number of stable attractors with system
Size

e Mimics sublinear growth of number of celltypes with genome
Size

Klemm & Bornholdt, Phys. Rev. E 72, 055101(R) (2005);
PNAS 102, 18414 (2005).
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From Boolean network to discrete map
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Attractors in discrete map
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Efficient search for attractors?

# states in attractors <« 28V

full enumeration of state space is not an efficient method
for finding all attractors

Node removal (Bilke and Sjunnesson, 2001): reduce N re-
cursively by eliminating constant nodes and nodes that do
not influence other nodes

Can reduction go beyond?
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Node-node correlations and contraction
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Node-node correlations and contraction
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Test case

e Test recursive node con- /\\‘\‘

traction in networks that -
cannot be decimated di-
rectly.

e Use only Boolean func-

-
tions that depend on
both inputs (K = 2).
e Each node is “seen” by -
at least one other node. \
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Shrinking state space

Size of state space

m—=a& mean over 1000 realizations
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